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Code available at

github.com/seilna/cnn-units-in-nlp
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Goal: Unit-level Analysis of Natural Language Representation

-] Learned CNN o -] Learned CNN
o) . o .
4>'<'%Bf3 L 0|28 8
F ozl k2= 2
-I—'g g%—* 2 0|2 =l—
S O =& 2 o= &
Q. wn O Q o o,
cC > C < | -
o = o
Q O

We show that individual units of CNNs learned on NLP

tasks could act as

More fine-grained insights
of representation (sauetal, cver17)

natural language concept detectors

Generate explanation of given prediction
(Zhou et al., ECCV 18’)

Previous Work on Unit-level Analysis

o ”Quote” UNIts (Karpathy et al.,

ICLR workshop 16)

"You mean to imply'thu I have nothing to

contrary, I NeEinEEsIIBIEES oS e R RN

dinner parties,"

thin

e “Sentiment” units (Radford et al., arXiv 17’)

Once in a while you get amazed over how BAD a film can be, and how in the

world anybody could raise money to make this kind of crap.
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* “Natural Language Concept™*” units (Ours)

*We define concept as building blocks

Unit 711:(SHould

would)(not)(can of natural language sentence;

e That|would|be cheap and it{would]|not|be right.
e Thisis[nothow it{sheuld be in a democracy.

* | hope that youlwould|not

*  Europe canotland must [notjtolerate this.

e That|would]not]be democratic. [Morpheme / Word / Phrase]

want that!

Approach: Alignment Score between Units and Concepts

1. Train CNN (e.g. ByteNet) on language task (e.g. Translation)
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2. For each unit u, find top k sentences which highly activate it
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s* = argmax a,(s)

|S for Unltu|

Sl That would not be democratic!

So: That would be cheap and it
would not be right.

Sa: This is not how it should be

In a democracy.

3. Obtain candidate concepts from constituency parse tree of top

k sentences s},

‘SI : That would not be democratzb‘

| That | would

|! !democm tic |

be democratic |

|W0u]d not be democra tjcl

Candidate Concepts
C, = {cqy:“That”, c,: “would’, ...,
cy: ‘woud not be democratic”}

4. Computelalignment_score(concept ¢,, unit u) =|

[au(replicated cn)]
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Discovery of Natural Language Concepts in Individual Units of CNNs
Seil Na*

Seoul National University

Which Concepts are Sensitive to Each Unit?

Layer14, Unit 690: (what)(who)(where]

gets Whal, how much and when?
On Wwhat basis, when and how?

Then we need to ask:|where|do we start?
However, Wwhai should we do at this point?
What]l am wondering now is: (Where are they?

Layer14, Unit 224:(sure) know) [aware)

* Are you [surd you are @warg of our full potential?
They know) that and we(know]that.

am [surg you will understand.

am ure you will do this.
am confident that we will find a solution.

Layer03, Unit 244: yery disappointing) absolute worst place]

(very disappointing) ordered a vegetarian entrée, ...

what the hell did i pay for?...

t

he absolute worst placeli have ever done business with!

t
t

ne is by far the worst restaurant i have ever been to...

nis place is a rip offl...

These units can serve as detectors for specific natural
language concepts

There are units capturing syntactically or semantically
related concepts

concepts
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Concept Granularity Evolves with Layer
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Layer Depth
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* Units are selectively responsive to specific concepts
 Our method successfully aligns such concepts to units

Which Concepts Appear More often?
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# of aligned units where # of aligned units where
each concept is aligned each concept is aligned

Concepts that (1) appear more often in training data &
(2) have more influence on loss value are detected in more units



